Numerically Calabi-yau Orders on Surfaces
نویسندگان
چکیده
This is part of an ongoing program to classify maximal orders on surfaces via their ramification data. Del Pezzo orders and ruled orders have been classified in [6, 4] and [2]. In this paper, we classify numerically CalabiYau orders which are the noncommutative analogues of surfaces of Kodaira dimension zero. Throughout, all objects and maps are assumed to be defined over some algebraically closed base field k of characteristic 0.
منابع مشابه
The cone conjecture for Calabi-Yau pairs in dimension two
A central idea of minimal model theory as formulated by Mori is to study algebraic varieties using convex geometry. The cone of curves of a projective variety is defined as the convex cone spanned by the numerical equivalence classes of algebraic curves; the dual cone is the cone of nef line bundles. For Fano varieties (varieties with ample anticanonical bundle), these cones are rational polyhe...
متن کاملThe Explicit Construction of Orders on Surfaces
The study of orders over surfaces is an integral aspect of noncommutative algebraic geometry. Although there is a substantial amount known about orders, relatively few concrete examples have been constructed explicitly. Of those already constructed, most are del Pezzo orders, noncommutative analogues of del Pezzo surfaces, the simplest case. We reintroduce a noncommutative analogue of the well-...
متن کاملMaps, Sheaves, and K3 Surfaces
The conjectural equivalence of curve counting on Calabi-Yau 3-folds via stable maps and stable pairs is discussed. By considering Calabi-Yau 3-folds with K3 fibrations, the correspondence naturally connects curve and sheaf counting on K3 surfaces. New results and conjectures (with D. Maulik) about descendent integration on K3 surfaces are announced. The recent proof of the Yau-Zaslow conjecture...
متن کاملA Finiteness Theorem for Elliptic Calabi-Yau Threefolds
The analagous class for surfaces are the K3 surfaces. All K3 surfaces are homeomorphic: there is one underlying topological type. On the other hand, there are a large number of topological types of minimal Calabi-Yau threefolds, but it is an open question of whether there are a finite number of such types. A stronger question would be to ask whether there are a finite number of families of alge...
متن کاملOn a Class of Non-simply Connected Calabi-yau Threefolds
We construct and obtain a detailed classification for a class of non-simply connected Calabi-Yau threefolds which are of potential interest for a wide range of problems in string phenomenology. These threefolds arise as quotients of Schoen’s Calabi-Yau threefolds, which are fiber products over P of two rational elliptic surfaces. The quotient is by a freely acting finite abelian group preservin...
متن کامل